
H2KV: A Hotspot Awareness based Hybrid
Fault-tolerant In-memory Key-Value Store

Lixiao Cui, Yingjie Geng*, Gang Wang†, Xiaoguang Liu†
College of Computer Science, TMCC, SysNet, DISSec, GTIISC, Nankai University, Tianjin, China

{cuilx, gengyj, wgzwp, liuxg}@nbjl.nankai.edu.cn

Abstract—In-memory key-value stores play an important role
in data-intensive scenarios, becoming one of the infrastructures
in modern data centers. With the expansion of data size, the
probability of in-memory KV store cluster failure continues to
increase. Therefore, it is important to construct fault-tolerant in-
memory KV stores to ensure service availability. The widely used
primary-backup replication (PBR) strategy can provide fault
tolerance while ensuring high performance. However, it has high
storage redundancy, which increases deployment costs. On the
contrary, the erasure coding can achieve the same fault-tolerant
level as PBR with less storage redundancy, but its computational
and network overhead cause performance degradation.

In this paper, we propose H2KV, to balance the performance
and storage overhead for fault-tolerant in-memory KV stores.
Motivated by the hotspot phenomenon of in-memory KV stores,
H2KV applies a hybrid fault-tolerant strategy. For frequently
accessed/updated hot key-value pairs, H2KV stores replicas for
them to achieve high-performance. While for less accessed cold
data, H2KV applies erasure coding mode to reduce storage
redundancy. In order to accurately distinguish the hotness of key-
value pairs, we propose a three-level hotspot filter mechanism.
Moreover, to alleviate the encoding and decoding overhead of
cold data, we pack the small-size key-value pairs to large
blocks and apply block-granularity for erasure coding operations.
We implement H2KV on popular Redis and evaluate it from
multiple dimensions. The results show that compared to the
replication method, the memory footprint of H2KV is 63% to
77%. Meanwhile, H2KV can maintain comparable performance
with PBR and significantly outperforms erasure coding.

Index Terms—in-memory key-value store, fault tolerance,
hotspot awareness, erasure code

I. INTRODUCTION

In-memory key-value (KV) stores, such as Redis [1] and
Memcached [2], have been widely used to support efficient
web service and database operations. Large-scale in-memory
KV store clusters containing tens of terabytes of data have
been deployed on Facebook [3], Twitter [4], and Alibaba [5].

As the cluster size increases, failures become more com-
mon [6]. For in-memory KV stores, a node crash will cause all
data in memory to be lost, affecting the overall performance
greatly. Therefore, it is necessary to provide fault tolerance
mechanisms for in-memory KV stores. A naive approach is to
utilize the local block device to persist the data and restore it
to memory after a failure. This method has been implemented
in some systems, like the AOF (Append Only File) of Redis.
However, recovering data from block devices to memory can

* Yingjie Geng is the joint first author.
† Corresponding author.

consume much time. According to Facebook, it needs 2 to 3
hours to rebuild 120GiB data from disk to memory [7]. The
long recovery times can affect service quality. In this paper,
we mainly focus on more efficient fault tolerance methods in
distributed in-memory KV stores, i.e., replication and erasure
coding.

Primary-backup replication (PBR) [8] is a common fault-
tolerant method, where N backup nodes save the data replicas
of a primary node. PBR mode can achieve high availability and
high performance. When the primary node encounters failures,
a backup node will take its place as the new primary node.
This switch can ensure the continuity of request processing.
However, PBR need many storage resources, i.e. N + 1
times memory overhead to tolerate N fails. Since DRAM is
expensive, PBR mode can greatly increase the deployment
cost. Erasure coding is another widely used fault-tolerant
method, which uses calculated data redundancy (i.e. parity)
to achieve data availability. An erasure coding [9] based
distributed system contains data nodes and parity nodes. The
data nodes store raw data from users and the parity nodes
store parity data calculated from raw data. Compared with
PBR, on the one hand, erasure coding has worse performance,
which spends more computation and network overhead for
encoding and decoding. On the other hand, erasure coding is
more space-efficient. It typically requires only several times
less storage space than PBR to achieve the same level of fault
tolerance.

Storage

Performance

Erasure 
Code

PBR

H2KV

Fig. 1: Theoretical performance vs storage overhead tradeoff.

We seek to build a fault-tolerant in-memory KV store to
obtain performance and space efficiency simultaneously, as
illustrated in Figure 1. An idea is to combine PBR and erasure
coding to build a hybrid fault-tolerant scheme. In this paper,
we propose H2KV, which applies a hotspot-aware hybrid
fault-tolerant method for in-memory KV stores. Different
from previous work [10], [11], H2KV determines which fault



tolerance scheme should be used for different data according
to its hotness. H2KV is motivated by the skewness workloads
of real-world scenarios [4], [5]. In a production environment,
a small set of data will carry most of the requests. This
phenomenon has been reported by Twitter [4], Alibaba [5] and
Facebook [3]. For hot data (i.e. frequently accessed/updated
key-value pairs), H2KV applies high-performance PBR.
Due to the small amount of hot data, the use of replicas
has little impact on the overall storage overhead. Meanwhile,
PBR is more efficient when frequently writing data because it
does not require complex calculations. To accelerate read, PBR
also allows users to read multiple replica nodes concurrently.
For cold data (i.e. less accessed/updated key-value pairs),
H2KV builds space-efficient erasure coding. Cold data
accounts for most of the total data volume. Using erasure
coding for it can reduce the overall storage overhead. Besides,
there are fewer cold data updates, which effectively reduces
the encoding calculation and network transmission overhead.

To implement H2KV efficiently, we still face many chal-
lenges. First, how to identify hot and cold data. To maintain
low space consumption and high performance, H2KV needs to
find the rare, most popular key-value pairs and use a replica-
tion strategy for them. To solve this issue, we propose a three-
level hotspot filter mechanism that is able to select hot data
precisely. Second, how to improve the encoding and decoding
efficiency of cold data further. The updates on cold data will
not inevitably affect runtime and recovery performance, this
is mainly brought by encoding/decoding overhead. Recent
studies [3], [4] observe that the key-value pairs are usually
small. Encoding them directly will result in poor encoding
performance and multiple network communications. To solve
these problems, we propose a block structure to organize small
KV pairs into big blocks and encode/decode data at block
granularity, reducing computational and network overhead.
Finally, how to recover data after a crash leveraging hybrid
fault tolerance. To solve it, we propose a two-phase recovery
mechanism, which uses backup nodes of PBR to restore
service quickly and asynchronously recovers the encoded cold
data, minimizing the recovery overhead.

We implement H2KV based on widely used Redis. The
evaluation results show that H2KV achieves performance close
to PBR when uses 63% to 77% of its memory footprint. The
main contributions of this paper are as follows.

1) We propose to choose different fault tolerance modes
according to the hotness of data to balance performance
and memory overhead.

2) We design a three-level hotspot filter mechanism to
distinguish hot and cold data.

3) We propose to apply block-granularity for erasure cod-
ing to improve the efficiency of encoding/decoding.

The organization of this paper is as follows. In Section II,
we introduce the background of fault-tolerant mechanisms.
Then in Section III and Section IV, we explain the key ideas
and design details of H2KV. In Section V, we show the
evaluation results of H2KV from multiple dimensions. Finally,

we discuss related work in Section VI and conclude this paper
in Section VII.

II. BACKGROUND

A. Primary-Backup Replication

Primary-backup replication (PBR) [8] is a popular fault tol-
erant approach. It has been employed by several widely-used
distributed storage systems including Ceph [12], GFS [13], and
HDFS [14] to ensure data availability. The fundamental idea
of PBR is to store multiple copies of user data on different
server nodes, thus achieving data redundancy. As shown in
Figure 2a, a fault-tolerant group contains a primary node and
N backup nodes, which can to tolerate N node failures. When
a node in the cluster fails, the service remains uninterrupted
as long as there is at least one complete copy of the data
within the cluster. The PBR mechanism can offer fast recovery
with simple implementation and easy to scale. However, PBR
brings high data redundancy, which spends N+1 times storage
of original raw data to tolerate at most N failures.

Primary

Backup

1

Backup

2

Backup 

N

Client

Set(K,V)

Set(K,V) Set(K,V) Set(K,V)

...

(a) KV-store with PBR

Data

Node 1

Parity

Node 1

Parity

Node 2

Parity

Node M

Client

Set(K,V)

△D1 △D2 △Dm

...

Data

Node K
D1’

D1 

 

Dk 

P1’

P1 

 P2’

P2 

 Pm’

Pm 

 

(b) KV-store with erasure coding

Fig. 2: Two different schemes of fault tolerance

B. Erasure Code

Erasure coding originates in the field of communication
and is introduced into distributed storage systems to achieve
data redundancy due to their low storage overhead. In recent
years, an increasing number of distributed storage systems
such as HDFS-RAID [15], Azure [16] and Ceph [12] begin to
use erasure coding to reduce storage overhead while ensuring
system reliability while ensuring system reliability.

Reed-Solomon code (RS-code) [17] is the most popular
coding scheme. An RS-code scheme can be represented as
RS(N,K), where N denotes the code length, K represents
the length of the effective information, and it can tolerate
at most N − K node failures. As Figure 2b shows, in a
distributed system with N nodes, the raw data is divided
into K data nodes, which are then encoded to generate
M parity nodes. When a node fails, the data can be fully
recovered through decoding operations using the data from any
remaining K nodes. Compared with PBR mechanism, erasure
coding can offer significantly lower storage redundancy while
providing the same fault tolerance capability. For example, for
an RS(5, 3) scheme, the storage redundancy is only 166%.



However, erasure coding also has inherent limitations, as the
encoding, updating, and decoding processes all introduce huge
transmission and computation overheads.

The encoding process of RS-code can be represented by
a matrix calculation. Because RS-Code is a linear coding,
it can be uniquely determined by a generated matrix S. We
use D and P represent the raw data vector and the parity
data vector respectively. Therefore, S ×D = P can represent
the encoding process. Similarly, during the recovery process
(i.e. decoding), the system can recalculate lost data or parity
data by solving equations derived from the aforementioned
formula. To improve the performance of data updates, we can
apply differential update [18]. In this case, data nodes only
need to transmit the XOR delta to parity node rather than
transmitting the entire new data. The parity node with update
parity data by adding the delta with a predefined coefficient,
which is shown in equation 1.

p
′
0

...
p
′
i

...
p
′
M−1


=S×



d0
...

di+∆di
...

dM−1

=


p0
...
pi
...

pM−1

+


a0,i

...
ai,i

...
aM−1,i

×∆di (1)

III. KEY IDEAS

1) Using PBR for hot accessed while using erasure coding
for cold data. The real-world access pattern of in-memory KV
store usually follows zipfian distribution [3], [4], [19]. Only
a small amount of data is accessed frequently and the rest of
the data is barely visited. As reported by Alibaba [5], in their
daily production environment, about 50% of total accesses
only touch 1% of total data. In extreme cases, 1% of total
data even handles 90% of users’ accesses. Recent studies [3],
[4] from Facebook and Twitter also confirm the distribution of
their workloads fits the zipfian distribution and is even more
skewed than the popular YCSB benchmark [19]. For example,
the skewness parameter of the extreme data distribution of
Alibaba in-memory systems is 1.22, which is much higher
than the default skewness (i.e. 0.99) of YCSB.

We design H2KV targeted for the skewed workloads in
real scenarios. H2KV introduces high-performance but space-
intensive PBR for hot accessed and applies space-efficient
but poor-performance erasure coding for cold data, thereby
balancing the performance and memory usage.

2) Using block granularity for erasure coding. The size
of key-value pairs of in-memory KV stores is usually small.
According to a study [4] from Twitter, about 75% of KV
pairs are less than 1KB in size. The median size of key and
value is 38B and 230B. Eisenman [20] et al. also report the
statistics of item size from Memcachier, a commercial in-
memory KV cache service. They find the average size of key-
value items is 257B. For erasure coding, small data granularity
is not performance-friendly. We measure the encode/decode
throughput (with SIMD acceleration) of a popular erasure
coding library, Jersure [21], under different block sizes. As

0

2000

4000

6000

8000

10000

T
hr

ou
gh

pu
t (

M
B

/s
)

Block size

Encode

Decode

Fig. 3: Throughput of encode/decode varying block size

Figure 3 shows, favorable encode/decode performance can
only be obtained when the block size is large. This observation
illustrates that small-grained key-value pairs are not suitable
for efficient encoding and decoding.

H2KV aims to solve it by packing key-value pairs into
large blocks with unified size and using block granularity
for erasure coding. This design can not only improve the
computational efficiency of erasure code, but also reduce the
number of network communications. For example, when we
pack 128 32-byte key-value pairs into a 4KB block, we only
need one network communication. However, it takes 128 times
when unpacked. Since network communications usually cause
overhead like system calls and data transmission, reducing
the number of communications can greatly alleviate overhead
brought by erasure coding.

IV. DESIGN

A. Overview

The fault-tolerant mechanism of H2KV is unified and can
be applied for distributed in-memory KV stores like Redis [1]
and Memcached [2]. In this paper, we implement H2KV based
on Redis. There are two commonly used basic interfaces for
H2KV: Get and Set. They handle reads and updates/writes to
KV pairs respectively. We only focus on the failures caused by
power outages or device errors. Commissions and Byzantine
failures are out of this paper.

The basic fault-tolerant unit of H2KV is an H2-group. A
group consists of N data nodes, K parity nodes and N*K
backup replication nodes, which can tolerate up to K failures.
Figure 4 shows an example of H2KV (N = 3 and K = 2) that
can tolerate up to 2 failures. The data nodes are responsible
for dealing with Get and Set requests from clients. In
data nodes, H2KV applies a three-level hotspot screening
mechanism to distinguish hot and cold data, which we will
discuss in Section IV-C. For hot data and warm data, H2KV
creates replications on backup nodes to achieve performance-
efficient fault-tolerance. The backup nodes also can serve to
Get to improve the overall performance. Because backup
nodes store hot data, most of read requests can be processed
successfully. For cold data, H2KV calculates parity data for
them and stores redundancy in parity nodes to achieve space-
efficient fault-tolerance. Specifically, H2KV first packs the
cold key-value pairs into large data blocks, then encode the



Data Node 1
Backup 
Node

Parity Node 1

replication replication

Hot ColdHot

Set/Get

Data Block

Data Block

Data Block

Parity 
Block

Parity Node 2

Data Block

Data Block

Data Block

Parity 
Block

Backup 
NodeHot

Data Node 2
Backup 
Node

replication replication

Hot ColdHot
Backup 
NodeHot

Data Node 3
Backup 
Node

replication replication

Hot ColdHot
Backup 
NodeHot

Cold 
Blocks

Cold 
Blocks

Cold 
Blocks

Get

Set/Get

Set/Get

Get

Get

Fig. 4: The overview of H2KV where N is 3 and K is 2.

parity block according to the aligned data block. When the
encoded cold data is updated, data nodes only need to calculate
the XOR delta between before and after the update and use
the delta to update parity blocks. We will introduce the details
in Section IV-B.

For recovery, H2KV applies a two-phase strategy. In the first
stage, H2KV first switches the backup node to the primary
data node, thus guaranteeing the quick restoration of service.
In the second stage, H2KV recovers cold data according to
parity data to complete full data recovery. Section IV-D will
introduce the implementation details.

B. Erasure Code with Block Granularity

1) Data organization: To alleviate the encode/decode over-
head, H2KV packs several small key-value pairs into aligned
large blocks. The block structure is shown in Figure 5. The
data organization of H2KV is motivated by slab allocator
and prior in-memory key-value stores [2], [22]. Like previous
work [2], [22], we divide a block into multiple chunks of
fixed length. The key-value pairs are stored in chunks. The
blocks with the same chunk size are grouped into the same
category. The number of categories is limited. As Figure 5
shows, when the block size is 4KB, we divided the blocks
into 256 categories in total, the chunk size increases from
16B to 4KB, and the step size is 16B. To quickly find a block
that can be stored when writing a key-value pair, we link the
blocks of every category into two lists, an available list and
a full list. The full list stores the blocks in which all chunks
are occupied. On the contrary, blocks in the available list have
free chunks where new key-value pairs can be placed. In the
current implementation, the default size of a block is 4KB.

Figure 5 also illustrates the metadata layout of a block. To
conveniently manage blocks, a bitmap is used to mark the
usage of chunks in the block. The category id records
which category the block belongs to. The ratio records the
proportion of chunks already used to the total, providing a
reference for garbage collection. The prev and next pointers
are used to link blocks into corresponding lists. The bid
and addr are used for efficient encoding/decoding. Among
them, bid is the serial number of the block, which is used

16B……Meta#0

#1

48B#2 ……

32B ……

48B

#3 Meta 64B 64B64B

Meta

Meta

……

bitmap

addrbid prev

category id keyhdr key valuevalhdr

Block

Chunk
next

ratio

Category

16B

32B

Fig. 5: The structure of block.

to index the block during the encoding and decoding process.
The addr is used to find corresponding parity blocks. We will
introduce the role of both in detail in Section IV-B2. H2KV
selects the appropriate category of blocks according to the
size of a KV pair and stores it into a chunk. The keyhdr
and valhdr are used to record the size of key and value
respectively.

2) The calculation of parity data: In H2KV, the basic unit
of encoding/decoding is a data block. Taking RS(5,3) as an
example, each coding stripe contains three data blocks and two
parity blocks. Figure 6 shows the block organization structure
of a parity node. Another parity node has the same structure.
In data nodes, H2KV maintains a hash table that maps bid to
each block to retrieve the data blocks. When a block becomes
a full block (i.e. there are no free chunks), the data node sends
this block to parity nodes. In a parity node, H2KV maintains
a block list for each data node to save the metadata of the
data blocks sent by different data nodes. Every time the parity
node receives a data block, its metadata will be added to the
end of the corresponding linked list.

When generating parity blocks (i.e. encoding), The data
blocks at the same position in the linked lists will be included
into the same stripe to calculate the corresponding parity
blocks. For example, the parityblock0 is calculated according
to three data blocks at the head of the linked lists, that is
the dblock0 from node 0, dblock2 from node 1 and dblock1



from node 2. After completing the calculation of the parity
data, the memory space occupied by the data blocks will be
released, and only the metadata will be reserved. The addr of
the block metadata will point to the parity block corresponding
to the data block. For recovering data after a crash, the lost
data blocks need to be retrieved based on parity data (i.e.
decoding). To complete this processing, H2KV needs to obtain
the surviving data blocks and parity blocks in the stripe. For
example, if data node 0 fails, H2KV will traverse block list 1
and block list 2 to get the bid of the surviving data block,
and request the data blocks from the corresponding data nodes
according to the bid. Meanwhile, H2KV will check the addr
field of data block metadata to obtain parity blocks.

Dblock0

Dblock1

Dblock2

ParityBlock0

ParityBlock1

ParityBlock2

Dblock0

Dblock2

Dblock1

0

Dblock2

Dblock0

Dblock1

1

Dblock1

Dblock2

Dblock0

2

Dblock0

Dblock1

Dblock2

Dblock0

Dblock1

Dblock2

Data
Node0

Data
Node1

Data
Node2

ParityNode0Block List

Fig. 6: The encode/decode structure with block granularity.

3) Data transfer: When performing fault-tolerance opera-
tions, in-memory KV stores usually leverage an asynchronous
transfer strategy to obtain better performance. For example,
the PBR implementation of Redis maintains a replication
backlog on both the primary and backup nodes respectively.
The backlog is a fixed-length queue that stores the data from
primary to backup nodes. The primary node sends data to
backup nodes asynchronously. Every time data is sent, the
primary node updates the data offset in the backlog. Similarly,
the backup nodes also update the offset after receiving the
data. To ensure data consistency, the primary node will check
whether the offsets of the primary and backup nodes are the
same in each heartbeat detection, and resend the corresponding
data from the backlog if they are inconsistent.

H2KV also applies an asynchronous data transfer strategy.
When sending data blocks to parity nodes, H2KV maintains
a linked list to store blocks that have been sent but have not
been confirmed by the parity nodes. Similar to the backlog
of Redis, the length of the linked list is also fixed, which
prevents excessive data differences between data nodes and
parity nodes. After the parity nodes receive data blocks,
the encoding process will also be performed asynchronously
without blocking the data nodes. In the process of calculating
the parity, the data blocks are saved in the parity nodes, which
is equivalent to using multiple replicas for fault tolerance. Only
when the encoding calculation is completed, the data blocks
will be released.

4) The update of parity data: There are two operations
that result in updates of the parity data, updates of key-value
pairs, and garbage collection of data blocks. For the updates
of a key-value pair, if the size of the new key-value pair does
not exceed the size of current stored chunk, it will be updated

in place. The delta parity will also be calculated to update the
parity block. If the new key-value pair is too large to update in-
place, it will be placed in other available data blocks. When the
block becomes full, it will be used to generate a parity block
along with other full data blocks. This non-in-place update will
cause ’garbage’ chunks in the old block, which is recorded by
the bitmap and ratio fields of block metadata. When there
are too many garbage chunks in a block (the ratio is lower
than 0.5 by default), H2KV will perform garbage collection.

ParityBlock0 Block0 Block3 Block2

ParityNode0DataNode0

Block0 Ratio < 0.5

Block5 ParityBlock0
’

ParityBlock0
’’ Block5

Block3

Block0 Block0

Move

Update

Update

XOR

XOR

Block2

Fig. 7: The updates of parity data when conducting garbage
collection.

The garbage collection can incur updates to parity blocks.
Figure 7 shows an example. Block 0 in data node 0 has a
low ratio and is selected to be recycled. H2KV first moves
the available key-value pairs in block 0 to other blocks (block
5 in Figure 7) and clears block 0. Then, H2KV obtains an
XOR delta between cleared block 0 and original block 0 to
update the parity block 0. Meanwhile, the parity node updates
the metadata of block 0 to mark it as recycled. Finally, when
block 5 becomes full, H2KV uses it to replace the original
position of block 0 to update the parity block 0. The XOR
delta between block 5 and a cleared block is calculated and
sent to parity nodes. The block metadata in the parity node is
also updated to record the information of block 5. In extreme
cases, all data blocks in a stripe will be garbage collected and
become cleared blocks. At this time, the parity blocks in the
stripe will also be released.

C. Hotspot Aware Mechanism

H2KV adopts different fault tolerance modes according to
the hotness of data. The overview of hotspot aware mechanism
is shown in Figure 8. H2KV records hotspot information at
the granularity of key-value pairs. Previous work [5], [23],
[24] on hotness identification usually divide data into two
states, cold and hot. However, this approach can lead to
frequent state switching of data between hot and cold. This
is unacceptable for H2KV, because state switching will lead
to fault-tolerant mode switching, resulting in huge overhead.
To filter frequently accessed data precisely and avoid frequent
fault-tolerant mode switching, H2KV proposes a three-level
filter mechanism. The key-value pairs are divided into three
categories, hot, warm and cold. For hot and warm data, H2KV
applies PBR for fault tolerance. For cold key-value pairs, they
are packed into blocks as described in Section IV-B. H2KV
applies erasure code for them.



Client

(Key, Value) (Key, Value)(Key, Value)
Access

Evict

Access

Evict
K

Block

(Key, Value)

Set(Key, Value)

Hot Data Warm Data

Cold Data (Erasure coding)

Move

PBR

Fig. 8: The overview of hotspot aware mechanism.

1) Three-level filter mechanism: The selection of hot data
and cold data can heavily affect the overall performance of
H2KV. The easiest way is to use traditional cache eviction
policies like LRU and LFU, but these strategies have two
main disadvantages that limit their use on H2KV. First, these
strategies are not precise when filtering cold data. Current
in-memory KV stores usually do not maintain the LRU/LFU
linked list, but uses the sampling mechanism [1], which saves
precious memory resource occupied by the linked list pointer.
However, limited by the number of samples, the sampled
key-value pairs may not contain cold data, so it is easy to
evict hot data. Second, hot and cold switching is frequent.
These cache strategies simply put a key-value pair to cache
once it is read, which can make some data frequently switch
between hot and cold data. This phenomenon is exacerbated
by imprecise filtering due to sampling. Applying this approach
to H2KV will incur significant performance degradation. Other
hotness identification work with only two state (i.e. cold and
hot) also has similar switching overhead. When a cold kv
pair is judged as hot data, H2KV needs to switch the fault
tolerance mechanism for it. This requires multiple network
communications with backup nodes. Similarly, when hot data
changes to cold data, H2KV also needs to pay network and
computing overhead to complete erasure code fault tolerance.

k, v
k, v

k, v
k, v

set(k, v)

Access

Hot

Warm

Cold

k, v

k, v

k, v

k, v

k, vk, v k, vk, v
Sample

Sample

k, v
k, v

k, v

k, v

Case①
Candidate is hot

Eviction Pool

Record its hotspot score as T

hotspot score＞T

k, v

k, v k, v

k, v
k, v

k, v

k, v

k, v

k, v

k, v
k, v

k, v

Case②
Candidate is warm

Fig. 9: Three-level hotspot filter mechanism.

The three-level filter mechanism can solve the above issues
effectively. As Figure 9 shows, a newly inserted key-value pair
is set to warm first. When the key-value pairs in warm state
are accessed, they are promoted to hot state. This state change
will not cause additional overhead, because both hot data and
warm data use PBR to ensure fault tolerance. H2KV can set the

maximum capacity hotmax of hot data and warm data. When
the total capacity of key-value pairs marked hot and warm
exceeds hotmax, data eviction is triggered. Same with prior
work [1], H2KV also uses a sampling method to evict cold
data. We maintain an eviction pool to store sampled key-value
pairs of the most recent rounds. Each eviction will find the
coldest data in the eviction pool, thus improving the accuracy
of filtering cold data. H2KV can use any traditional cache
evict algorithms like LRU and LFU to select candidates. The
biggest difference from the previous methods is that H2KV
does not set all candidates to cold. If a candidate key-value
pair is mark as hot state, it will be set to warm. This gives the
hot key-value pair a second chance, reducing the possibility
of it being misidentified as cold. If a candidate key-value pair
is marked as the warm state, it will be evicted to cold region.
Meanwhile, H2KV records a hotspot score T of the evicted
key-value pair, which is the number of accesses of the recent
period. For cold key-value pairs, H2KV checks their hotspot
score when accessing them. Those key-value pairs whose score
exceeds T will be promoted to warm data. This avoids the
frequent conversion of cold data to hot data.

2) Switching of fault-tolerant mode: Changes in the hot
and cold state of the key-value pairs can bring the switching
of fault tolerance mode. For new key-value pairs, H2KV sets
them to warm and leverages PBR to ensure fault tolerance.
When a warm key-value pair becomes cold, H2KV moves it
into a data block and switches fault-tolerant mode to erasure
coding. The encoding process is described in Section IV-B.
During this process, the replications on the backup nodes are
reserved. Only when the primary node receives the information
that the parity nodes have completed the encoding, it will
release the replications. Therefore, the data reliability is still
maintained when switching modes. Similarly, when cold data
is converted to hot data, the parity data will be updated when
the replicas are established. The update of parity data also uses
an XOR delta strategy as introduced in section IV-B4.

D. Recovery

1) Crash of data nodes: When the data nodes crash,
H2KV adopts a two-stage recovery mechanism to quickly
restore services. In the first stage, H2KV conducts a simple
primary/backup switch to select a backup node as the new
primary node. Since the backup node stores hot data, the
switched primary node can respond to most user requests.
Since in-memory KV systems are generally used as a cache,
for requests to cold data that cannot be processed in the
switched primary node, the underlying persistent system (e.g.
databases) is responsible for handling them. This stage can
ensure fast performance recovery of H2KV after failures. In
the second stage, H2KV recovers cold data from parity nodes.
This process is slow because the decoding of the erasure
code requires a lot of calculations and multiple network
transmissions. However, since the first stage has recovered
hot data, the decoding of cold data can be performed in
the background. Compared to previous work [10], [11], [25]
using erasure codes for fault tolerance, the two-stage recovery



mechanism of H2KV does not need to wait for slow decoding,
achieving fast recovery with small storage redundancy (i.e. the
hot data using PBR).

2) Crash of backup and parity nodes: The crash of
backup and parity nodes only reduces the fault tolerance
level of H2KV but does not affect service availability. H2KV
will restore the backup nodes and parity nodes respectively
according to the hot and cold information recorded on the data
nodes. For a backup node crash, H2KV directly sends hot data
to the node to complete the recovery. For a parity node crash,
H2KV will recover the lost parity blocks according to the
information of the parity strips on the other surviving parity
nodes. If all the parity nodes crash, H2KV will re-encode
the parity based on the cold key-value on the data nodes as
described in Section IV-B.

E. Implementation

We implement H2KV on Redis 4.0.14. For hot KV pairs,
H2KV uses jemalloc to manage them. For cold KV pairs,
H2KV leverage block structure as introduced in Section IV-B
to store them. H2KV also adopts a hash table as the index like
other in-memory KV stores. We add a field to the hash entry of
H2KV to mark the status of the KV pairs (hot, warm or cold).
In the current implementation, H2KV applies reed–solomon
(RS) coding for erasure coding. But other more efficient
coding mechanisms, like RDP code [26], [27], can also be
easily implemented in our work. For PBR implementation,
H2KV still uses the same mechanism as Redis. H2KV uses
LFU in the three-level filter mechanism to filter candidates by
default.

V. EVALUATION

A. Experimental Setup

An H2-group is the basic fault-tolerant unit. Therefore, in
this section, we measure the performance of an H2-group.
The evaluated H2KV is configured to tolerate at most two
failures, which contains 3 data nodes, 6 backup nodes and 3
parity nodes. We create 12 virtual machines to host an H2KV
fault-tolerant group. The hardware configuration of evaluation
platform is equipped with two Intel(R) Xeon(R) Gold 5220
CPUs (2.2GHz, 18 cores, 32KB L1i cache, 32KB L1d cache,
1MB L2 cache and 25MB L3 cache) and 128GB memory. It
is connected with 1Gb network.

1) Workloads: We evaluate H2KV by testing various set-
tings for value size, read-write ratio and degree of hotspot
skewness. The size of key used in our paper is 16B. For
value size, because the value is small in the production
environment, we apply 32B to 1KB for evaluation. The total
number of key-value pairs in our evaluation is 20M. Our
H2KV is designed for hotspot workload. Therefore, we use
the popular YCSB benchmark, which is confirmed to match
the hotspot access characteristics in real scenarios. The key
popularity of YCSB is zipfian distribution and the default
hotspot skewness is 0.99. We also evaluate H2KV with other
skewness degrees. We measure performance with different
read-write ratio. Specifically, we use three patterns including

(1) 50% Set + 50% Get, (2) 5% Set + 95% Get and (3)
100% Get. They correspond to A, B, and C workloads in
YCSB benchmark [19] respectively.

2) Test tools: We use YCSB benchmark to generate work-
loads. Because the original YCSB client does not support
evaluating multiple instances at the same time, we implement
an efficient client using hiredis [28]. The client has 16
threads and is connected with H2KV through TCP. To improve
performance, we use batched sending strategies. The batch size
is 10.

3) Compared systems: We compare H2KV with four coun-
terparts. (1) Cluster, a cluster without fault tolerance. Same
with H2KV, we deploy 3 data nodes for it. (2) PBR, a cluster
that uses PBR for fault tolerance. To maintain the same fault-
tolerant level with H2KV, we use 3 data nodes and each data
node is equipped with 2 backup nodes (6 backup nodes in
total). (3) Block-EC, a cluster that uses erasure coding for fault
tolerance. Same with H2KV, it also applies block-granularity
erasure coding. (4) Basic-EC, a cluster that also uses erasure
coding for fault tolerance. But the encoding/decoding granular-
ity is key-value pair. Both Block-EC and Basic-EC leverage
Reed-Solomon code. To match the fault-tolerant level with
H2KV and PBR, they use RS(5,3) which contains 3 data nodes
and 2 parity nodes. For a fair comparison, these four systems
are also based on Redis. For Cluster and PBR, we use the
official implementation in Redis. For Block-EC and Basic-EC,
we implement them ourselves as efficiently as possible.

B. Memory Consumption

In this section, we will evaluate the memory consumption
of H2KV compared with other fault-tolerant methods. We first
calculated the theoretical storage redundancy of PBR, erasure
coding and H2KV as shown in Table I. In theory, H2KV
has obvious advantages compared with PBR and increases
acceptable storage redundancy compared to erasure coding.
In actual scenarios, the amount of hot data is usually small,
therefore, we set the maximum amount of data (i.e. hotmax)
using PBR to 15% and 10% respectively and calculate the
corresponding memory usage. when hotmax is 10%, H2KV
theoretically saves 120% redundancy than PBR.

TABLE I: Theoretical memory redundancy when tolerating at
most 2 failures. H2KV (a%) represents a% of total data in
H2KV using PBR while 1-a% of data using erasure coding.

Methods PBR RS(5,3) H2KV(15%) H2KV(10%)
Redundancy 300% 167% 187% 180%

To prove the redundancy advantage of H2KV, we measure
the real memory consumption and the results are shown in
Figure 10. Apart from PBR and Block-EC, we also measure
Cocytus [10] (denoted by Cocytus-EC), which uses erasure
coding for value and PBR for key. The memory usage of
H2KV is between PBR and erasure coding. When value size
is 64B, the real memory redundancy of H2KV is 191% (when
hotmax is 10%). This result is close to theoretical value and
the increased part is mainly brought by metadata (e.g. block



0%

50%

100%

150%

200%

250%

300%

350%

32B 64B 128B 256B 512B 1KB Random

S
to

ra
ge

 R
ed

un
da

nc
y

Value Size

PBR Cocytus-EC Block-EC H2KV(15%) H2KV(10%)

Fig. 10: Memory consumption.

metadata). Compared with PBR, H2KV only uses 63% to 77%
memory when value size ranges from 32B to 1KB. Block-
EC has low memory usage when value size is small and its
memory consumption is less than Cocytus-EC. When value
size is 32B, the memory redundancy of Block-EC is 170%,
which is almost same with the theoretical value. Cocytus-EC
leverages PBR to ensure fault-tolerant for keys. Therefore,
it needs more memory space than pure erasure coding. This
phenomenon is especially obvious under the small granularity
value. As the growth of value size, the storage redundancy of
Block-EC increases. This is brought by the memory hole of
block management. For example, when value size is 1KB, the
space required to store a key-value pair is 1044B, including
1KB value, 16B key, 2B keyhdr and 2B valhdr. Because the
block size we used is 4KB, a block can only hold 3 key-value
pairs, incurring a memory hole close to 1000B. The overhead
caused by memory holes can be eliminated by increasing the
block size and dividing blocks into more categories. Because
H2KV also use block granularity erasure coding, it also has
more memory consumption for large value size. But H2KV
still has an advantage compared to PBR when value size is
512B and 1KB. We also test random value size ranging from
32B to 1KB. H2KV(10%) uses 31% less memory than PBR
and it only uses 13% more memory than Block-EC.

C. Overall Performance

In this section, we will measure the read/write OPS (oper-
ations per second) of H2KV (10% PBR). We do not compare
Cocytus because it is based on memcached [2]. The architec-
tures of memcached and Redis are different, resulting in large
differences in the performance of their systems themselves.
Directly comparing Cocytus and H2KV cannot reflect the effi-
ciency of their fault tolerance mechanisms. Actually, Cocytus
needs to encode and decode every time data is updated, so
its write performance is close to Block-EC. Figure 11 shows
the performance under YCSB A. The performance of Block-
EC decreases as the value size becomes larger. There are
two reasons. First, in our implementation, we use a fixed-
size sending list (see Section IV-B3) to limit the number of
blocks for asynchronous encoding. By default, the link list can
save up to 4MB of data. With a larger value, the sending list
becomes full more easily. In this case, the system needs to wait
for the previous encoding to complete, degrading performance.
Second, with a larger value, the total size of dataset increases.

This requires more encoding calculations and also reduces
performance. Our H2KV obviously outperforms Block-EC.
With a 32B value, it is 51% higher than Block-EC. For the
same reasons as Block-EC, the performance of H2KV also
decreases at a large value. However, it is still several times
better than Block-EC. This demonstrates the effectiveness of
using PBR for hot data. To improve the performance of H2KV,
we can increase the size of sending list, which can alleviate
data waits in asynchronous encoding. We set the size to 80MB
and measure it (denoted by H2KV-Improve). H2KV-Improve
has comparable OPS with PBR and is far superior to Block-
EC.

0

1

2

3

4

5

6

7

8

32B 64B 128B 256B 512B 1K

O
P

S
x 

10
00

00
Value Size

Cluster PBR H2KV H2KV-Improve Block-EC

Fig. 11: Performance under YCSB A.

Then we discuss the observations under YCSB B as shown
in Figure 12. With a read-heavy workload (only 5% Set),
PBR, H2KV and Block-EC have close performance when value
size is smaller than 256B. The slightly lower performance
of H2KV is because we modified the hash index for storing
hotness state. When the value becomes larger, Block-EC
suffers from performance degradation for the same reasons
under YCSB A.

0

2

4

6

8

10

32B 64B 128B 256B 512B 1K

O
P

S
x 

10
00

00

Value Size

Cluster PBR H2KV Block-EC

Fig. 12: Performance under YCSB B.

Under YCSB A and YCSB B, we measure performance
of only using the data nodes to process the requests. In
fact, the backup nodes can also be used to handle Get, that
is, multi-node parallel read. Both PBR and H2KV support
this optimization. Under YCSB C (Figure 13), we measure
H2KV with multi-node parallel read. Because the backup
nodes of H2KV store most of hot data, they can serve most
requests, improving performance significantly. In detail, H2KV
outperforms Cluster by up to 79% and Block-EC by up to 81%.



0

5

10

15

20

32B 64B 128B 256B 512B 1KB

O
P

S
x 

10
00

00

Value Size

Cluster PBR H2KV Block-EC

Fig. 13: Performance under YCSB C.

Both Cluster and Block-EC can only use data nodes to handle
read requests. Compared with PBR, H2KV is just 16% lower
than it. The performance gap is caused by the inability of the
backup nodes to handle cold data read requests.

In summary, by leveraging hybrid fault tolerance based on
hotspot awareness, H2KV can achieve much higher OPS than
Block-EC. Meanwhile, the performance of H2KV and PBR are
comparable.

D. Efficiency of Block-granularity Erasure Coding

In this section, we evaluate the performance of Basic-EC,
to explore the efficiency of using blocks for erasure coding.
Table II shows the normalized OPS of Basic-EC to Block-EC.
Because the overhead of erasure coding only impacts Set, we
conduct evaluations with two Set ratios.

TABLE II: Performance of Basic-EC normalized to Block-EC
(i.e. Block-EC is 100%).

Value Size 32B 64B 128B 256B 512B 1KB
100% Set 0.2% 0.3% 0.5% 1.9% 8.3% 52.6%
50% Set 0.8% 0.8% 0.9% 1.9% 8.0% 56.9%

The performance of Block-EC far exceeds that of Basic-EC.
This trend is more obvious when the value size is small. There
are two reasons for this. First, the encoding efficiency is poor
at small granularity (see Figure 3), dragging down the overall
performance of Basic-EC. On the contrary, Block-EC leverages
block for large-grained encoding. Second, for Basic-EC, it
generates a network communication between parity nodes and
data nodes when a key-value pair is encoded, while Block-EC
packs multiple small key-value pairs into a block and sends
them in one network communication. Therefore, the number
of network communicates of Basic-EC far exceeds Block-EC,
causing performance degradation.

As the value size increases, the performance gap between
Block-EC and Basic-EC continues to decrease. on the one
hand, the larger value improves the encoding efficiency of
Basic-EC, making it close to using big blocks. On the other
hand, the larger value reduces the number of key-value pairs
loaded in a block. The number of network communications
generated by the two also becomes close. In extreme cases,
Block-EC and Basic-EC will achieve the same performance
when the value size and block size are the same.

E. Efficiency of Hotspot Aware Method

In this section, we evaluate the efficiency of our proposed
hotspot aware method. H2KV applies a three-level filter mech-
anism (denoted by TLF in our evaluation). We compare it with
the original cache evict algorithm (denoted by base). We also
compared two variants of the TLF mechanism, TLF (w/o cold
back) and TLF (hot start). TLF (w/o cold back) does not allow
convert cold data to warm data. TLF (hot start) initializes
new data to hot state instead of warm state. We record the
access frequency hit rate under different skewness degrees.
The access frequency hit rate indicates the ratio between the
number of accesses can be processed by the filtered hotspot
data to the number of accesses that can be processed by the
actual top-hotmax data. We conduct an evaluation under two
skewness, 0.99 and 0.88. With 0.99 skewness (default setting
of YCSB), the hotmax is set to 10% and for 0.88 skewness
(80% of accesses touch 20% of data), the hotmax is 15%.

88.12%

94.02%

70%

75%

80%

85%

90%

95%

100%

LRU LFU

A
cc

es
s 

fr
eq

ue
nc

y 
hi

t r
at

e

base
TLF(w/o cold back)
TLF(hot start)
TLF

Fig. 14: Access frequency hit rate with 0.88 skewness.

94.95%

98.39%

90%

92%

94%

96%

98%

100%

LRU LFU

A
cc

es
s 

fr
eq

ue
nc

y 
hi

t r
at

e

base
TLF(w/o cold back)
TLF(hot start)
TLF

Fig. 15: Access frequency hit rate with 0.99 skewness.

Figure 14 presents the measurement results. Applying LFU
as the basic candidate selection method in H2KV has an
advantage over LRU. This is because the sampling LFU of
Redis uses an attenuation mechanism of access frequency,
which improves the hit rate compared with LRU. The access
frequency hit rate of TLF is higher than base algorithms
varying different skewness. When skewness is 0.99, TLF
screened out almost all the hotspot data. In this case, the access
frequency hit rate is 98.39%. TLF (w/o cold back) and TLF
(hot start) have lower access frequency hit rate than TLF. TLF
(w/o cold back) lacks data conversion from cold to hot. Once
a hot item is misjudged and enters into cold state, it cannot be
promoted when revisited. This degrades the efficiency of hot



data filter. As for TLF (hot start), because it places new key-
value pairs into hot state, the filter policy is unable to rapidly
convert less-accessed data into cold state. TLF initializes new
data as warm state that can quickly identify cold data and
demote them. Meanwhile, it promotes the data whose hotspot
value is greater than T from cold state, improving performance
further. The above evaluation and analysis imply the efficiency
of three-level filter mechanism.

F. Recovery

In this section, we measure the recovery performance of
H2KV. Because the amount of hot data in H2KV affects re-
covery, we apply two skewness degrees with different hotmax.
They are 0.99 skewness with 10% hotmax and 0.88 skewness
with 15% hotmax. We simulate a single point of data node
failure in H2KV with 16B key and 32B value.

155.58 

22.47 21.33 18.51 

1

10

100

1000

PBR H2KV(15%) H2KV(10%) Block-EC

T
hr

ou
gh

pu
t (

M
B

/s
)

Fig. 16: Recovery throughput.

We first illustrate the results of recovering total data. The
recovery throughput is shown in Figure 16. The performance
gap between Block-EC and PBR is large. The Data can be
reconstructed in PBR with only one network transfer. However,
Block-EC not only needs more network transmission, but
also decoding calculation. The recovery throughput of H2KV
is between PBR and Block-EC. H2KV (15%) has a higher
throughput than H2KV(10%). This implies the more data
H2KV uses PBR for fault tolerance, the faster the recovery
speed. We also notice that H2KV is still much slower than
PBR, this is because most data within H2KV is cold and it is
restored by erasure coding.

0

5

10

15

20

25

0 5 10 15 20 25 30

O
PS

x 
10

00
0

Time (s)

PBR H2KV(15%) H2KV(10%)

Fig. 17: Real-time OPS when conducting recovery.

Although the recovery throughput of H2KV has a great
gap with PBR, the two-stage recovery mechanism of H2KV
can make it restore service quickly. Figure 17 presents the

real-time read-only IOPS before and after recovery. In the
10th second, the system has a single point of failure, and
the IOPS quickly drops to 0. Then PBR will elect a new
node as the primary node and continue request processing.
H2KV also performs a simple primary-backup switch on the
first recovery stage. Because the backup nodes in H2KV store
frequently accessed data, it can handle most of users’ requests.
For example, for H2KV (10%) under 0.99 skewness, after
recovering in the first stage, it can achieve 85% of IOPS before
the crash. At the same time, the recovery of cold data in the
second stage is performed in the background without affecting
service performance.

VI. RELATED WORK

Fault-tolerant storage systems. Some in-memory KV
stores apply fault-tolerant methods. Redis [1] and RAM-
Cloud [29] use local disks to save data replicas so that the
in-memory data can be recovered after a crash. However, this
fault tolerance method breaks down when the local node fails.
A better way to tolerate faults is distributed fault tolerance.
Cocytus [10] applies replication for keys and leverages era-
sure coding for values. However, it can suffer performance
degradation when the key-values are updated frequently. Both
MemEC [30] and EC-Cache [11] apply erasure coding for
all data. Although MemEC optimizes performance for small
granularity encoding, the network and calculation overhead
still limit the efficiency. BCStore [25] and GU [31] also use
erasure coding, they leverage batch processing to improve the
write performance. ERP [32] proposed a replication placement
strategy based on data popularity, reducing the data transmis-
sion cost. H2KV optimizes fault tolerance through hotspot
awareness, retaining the advantages of both PBR and erasure
coding. There are some fault-tolerant work on other systems.
ER-Store [33] optimize distributed databases with hybrid fault-
tolerant mechanism. WarmCache [34] proposes a hybrid fault-
tolerant method based on distributed file systems. Our work
focuses on KV stores. Unlike the above-mentioned systems,
the size of key-value pairs is very small, resulting in low
encoding efficiency. H2KV solves this problem using block
structure.

Hotspot awareness. There are numerous prior studies that
apply hotspot awareness mechanism. Hotring [5] and VIP-
hashing [23] optimize hash tables for hotspot workloads. They
promote the frequently accessed items to the head of collision
chains to reduce memory access to hot data. To filter hot items,
a sampling method is applied. ZExpander [35] distinguishes
cold data and compresses them to save memory footprint. Jin
et al. [24] proposed an in-memory KV store using hybrid
memory, which uses cheap persistent memory to store cold
data and places hot data in DRAM. The three-level filter
mechanism of H2KV can accurately distinguish hot and cold
data, making it use hotspot awareness to improve performance.

Erasure code. Apart from RS code used in this paper, there
are various erasure coding types, including EVENODD [36],
RDP [26], and STAR code [37]. These codes also can be ap-
plied in H2KV. Some work conducted efficiency optimization



for erasure coding. Plank et al. [38], Gibraltar et al. [39] and
Zhou et al. [40] optimize the computation of erasure coding
using technologies like SIMD, GPU and etc. Some previous
works [41]–[44] improve the transmission efficiency of erasure
coding. These optimizations can also be adopted by H2KV.

VII. CONCLUSION

In this paper, we propose a hybrid fault-tolerant in-memory
key-value store, H2KV. H2KV utilizes the hotspot aware
method to separate hot data and cold data. By adopting differ-
ent fault tolerance schemes for data with different hotness,
H2KV can achieve both space efficiency and high perfor-
mance. We implement H2KV based on popular Redis and
evaluate it with various workloads. The results show that
H2KV uses about 30% memory less than PBR and performs
close to it. Compared with using erasure coding, H2KV has
more than 51% performance improvement.

ACKNOWLEDGEMENTS

This research is supported by National Science Foundation
of China under Grant 62272252 and 62272253, the Key Re-
search and Development Program of Guangdong under Grant
2021B0101310002, and the Fundamental Research Funds for
the Central Universities.

REFERENCES

[1] “Redis.” https://redis.io/.
[2] “Memcached.” http://memcached.org/.
[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,

“Workload Analysis of a Large-Scale Key-Value Store,” SIGMETRICS
Perform. Eval. Rev., vol. 40, no. 1, p. 53–64, 2012.

[4] J. Yang, Y. Yue, and K. Rashmi, “A large scale analysis of hundreds
of in-memory cache clusters at twitter,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pp. 191–208,
2020.

[5] J. Chen, L. Chen, S. Wang, G. Zhu, Y. Sun, H. Liu, and F. Li,
“Hotring: A hotspot-aware in-memory key-value store,” in 18th USENIX
Conference on File and Storage Technologies (FAST 20), pp. 239–252,
2020.

[6] G. Wang, L. Zhang, and W. Xu, “What can we learn from four years
of data center hardware failures?,” in 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pp. 25–36, IEEE, 2017.

[7] A. Goel, B. Chopra, C. Gerea, D. Mátáni, J. Metzler, F. Ul Haq, and
J. Wiener, “Fast database restarts at facebook,” in Proceedings of the
2014 ACM SIGMOD international conference on Management of data,
pp. 541–549, 2014.

[8] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The primary-
backup approach,” Distributed systems, vol. 2, pp. 199–216, 1993.

[9] H.-Y. Lin and W.-G. Tzeng, “A secure erasure code-based cloud storage
system with secure data forwarding,” IEEE transactions on parallel and
distributed systems, vol. 23, no. 6, pp. 995–1003, 2011.

[10] H. Chen, H. Zhang, M. Dong, Z. Wang, Y. Xia, H. Guan, and B. Zang,
“Efficient and available in-memory kv-store with hybrid erasure coding
and replication,” ACM Transactions on Storage (TOS), vol. 13, no. 3,
pp. 1–30, 2017.

[11] K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ramchandran,
“Ec-cache:load-balanced, low-latency cluster caching with online era-
sure coding,” in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pp. 401–417, 2016.

[12] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation, pp. 307–320, 2006.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proceedings of the nineteenth ACM symposium on Operating systems
principles, pp. 29–43, 2003.

[14] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST), pp. 1–10, Ieee, 2010.

[15] “HDFS RAID.” http://wiki.apache.org/hadoop/HDFS-RAID.
[16] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,

and S. Yekhanin, “Erasure coding in windows azure storage,” in Pre-
sented as part of the 2012 {USENIX} Annual Technical Conference
({USENIX}{ATC} 12), pp. 15–26, 2012.

[17] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[18] C. Canudas-de Wit, F. R. Rubio, J. Fornes, and F. Gómez-Estern,
“Differential coding in networked controlled linear systems,” in 2006
American Control Conference, pp. 6–pp, IEEE, 2006.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC ’10, 2010.

[20] A. Eisenman, A. Cidon, E. Pergament, O. Haimovich, R. Stutsman,
M. Alizadeh, and S. Katti, “Flashield: a Hybrid Key-value Cache that
Controls Flash Write Amplification,” in Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’19), pp. 65–78, 2019.

[21] K. M. G. James S. Plank, “jerasure.” https://github.com/tsuraan/Jerasure.
[22] L. Cui, K. He, Y. Li, P. Li, J. Zhang, G. Wang, and X. Liu, “Swapkv: A

hotness aware in-memory key-value store for hybrid memory systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 1,
pp. 917–930, 2023.

[23] A. Kakaraparthy, J. M. Patel, B. P. Kroth, and K. Park, “Vip hashing:
Adapting to skew in popularity of data on the fly,” Proc. VLDB Endow.,
vol. 15, p. 1978–1990, sep 2022.

[24] H. Jin, Z. Li, H. Liu, X. Liao, and Y. Zhang, “Hotspot-aware hybrid
memory management for in-memory key-value stores,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 31, no. 4, pp. 779–792,
2020.

[25] S. Li, Q. Zhang, Z. Yang, and Y. Dai, “Bcstore: Bandwidth-efficient in-
memory kv-store with batch coding,” Proc. of IEEE MSST, pp. 14–16,
2017.

[26] J. Feng, Y. Chen, D. Summerville, and Z. Su, “An extension of
rdp code with parallel decoding procedure,” in 2012 IEEE Consumer
Communications and Networking Conference (CCNC), pp. 154–158,
IEEE, 2012.

[27] L. Xiang, Y. Xu, J. C. Lui, and Q. Chang, “Optimal recovery of
single disk failure in rdp code storage systems,” ACM SIGMETRICS
Performance Evaluation Review, vol. 38, no. 1, pp. 119–130, 2010.

[28] “Hiredis.” https://github.com/redis/hiredis.
[29] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,

D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang, “The ramcloud storage system,” ACM Trans. Comput. Syst.,
vol. 33, aug 2015.

[30] M. M. Yiu, H. H. Chan, and P. P. Lee, “Erasure coding for small objects
in in-memory kv storage,” in Proceedings of the 10th ACM International
Systems and Storage Conference, pp. 1–12, 2017.

[31] J. Xia, J. Huang, X. Qin, Q. Cao, and C. Xie, “Revisiting updating
schemes for erasure-coded in-memory stores,” in 2017 International
Conference on Networking, Architecture, and Storage (NAS), pp. 1–6,
IEEE, 2017.

[32] B. Xu, J. Huang, X. Qin, and Q. Cao, “Traffic-aware erasure-coded
archival schemes for in-memory stores,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 12, pp. 2938–2953, 2020.

[33] Z. Li, C. Xiao, and J. Qian, “Er-store: A hybrid storage mechanism
with erasure coding and replication in distributed database systems,”
Sci. Program., vol. 2021, jan 2021.

[34] B. A. Ignacio, C. Wu, and J. Li, “Warmcache: A comprehensive
distributed storage system combining replication, erasure codes and
buffer cache,” in Green, Pervasive, and Cloud Computing, (Cham),
pp. 269–283, Springer International Publishing, 2019.

[35] X. Wu, L. Zhang, Y. Wang, Y. Ren, M. Hack, and S. Jiang, “Zexpander:
A key-value cache with both high performance and fewer misses,” in
Proceedings of the Eleventh European Conference on Computer Systems,
EuroSys ’16, 2016.



[36] M. Blaum, J. Brady, J. Bruck, and J. Menon, “Evenodd: An efficient
scheme for tolerating double disk failures in raid architectures,” IEEE
Transactions on computers, vol. 44, no. 2, pp. 192–202, 1995.

[37] C. Huang and L. Xu, “Star: An efficient coding scheme for correcting
triple storage node failures,” IEEE Transactions on Computers, vol. 57,
no. 7, pp. 889–901, 2008.

[38] J. S. Plank, K. M. Greenan, and E. L. Miller, “Screaming fast galois
field arithmetic using intel simd instructions,” in FAST, pp. 299–306,
2013.

[39] M. L. Curry, A. Skjellum, H. Lee Ward, and R. Brightwell, “Gibraltar: A
reed-solomon coding library for storage applications on programmable
graphics processors,” Concurrency and Computation: Practice and Ex-
perience, vol. 23, no. 18, pp. 2477–2495, 2011.

[40] T. Zhou and C. Tian, “Fast erasure coding for data storage: A com-
prehensive study of the acceleration techniques,” ACM Transactions on
Storage (TOS), vol. 16, no. 1, pp. 1–24, 2020.

[41] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE
transactions on information theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[42] O. Khan, R. C. Burns, J. S. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for cloud file systems: minimizing i/o for recovery and
degraded reads.,” in FAST, p. 20, 2012.

[43] Y. Hu, L. Cheng, Q. Yao, P. P. Lee, W. Wang, and W. Chen, “Exploiting
combined locality for wide-stripe erasure coding in distributed storage,”
in FAST, pp. 233–248, 2021.

[44] S. Mitra, R. Panta, M.-R. Ra, and S. Bagchi, “Partial-parallel-repair
(ppr) a distributed technique for repairing erasure coded storage,” in
Proceedings of the eleventh European conference on computer systems,
pp. 1–16, 2016.


